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We consider a variant of the problem of directed polymers on a disordered 
lattice, in which the disorder is "geometrical" in nature. In particular, we allow a 
finite probability for each bond to be absent from the lattice. We show, through 
the use of numerical and scaling arguments on both Euclidean and hierarchical 
lattices, that the model has two distinct scaling behaviors, depending upon 
whether the concentration of bonds on the lattice is at or above the directed 
percolation threshold. We are particularly interested in the exponents o) and ~, 
defined by 6 f ~  t ~ and fix ~ t ~, describing the free-energy and transverse fluctua- 
tions, respectively. Above the !6ercolation threshold, the scaling behavior is 
governed by the standard "random energy'! exponents (co = 1/3 and ~" = 2/3 in 
1 + 1 dimensions). At the percolation threshold, we predict (and verify numeri- 
cally in l + 1 dimensions) the exponents co = 1/2 and ~ = va/vll, where v• and 
vii are the directed percolation exponents. In addition, we predict the absence of 
a "free phase" in any dimension at the percolation threshold. 

KEY WORDS: Directed polymers; percolation; random walks; hierarchical 
lattices; disorder. 

1. I N T R O D U C T I O N  

Recent ly ,  there  has  been  m u c h  in teres t  in  the p r o b l e m  of d i rec ted  pa ths  in  
a r a n d o m  po t en t i a l  (~-3) (see ref. 2 for a recent  review).  In  add i t i on ,  there  

has  been  a genera l  in teres t  in  a large class of  p r o b l e m s  i nvo lv ing  d i rec ted  
pa ths  a n d  closely re la ted  q u e s t i o n s  in  interface growth .  (4) Here  we cons ide r  
a s imi lar  p r o b l e m  with  the "geomet r i ca l "  d i so rde r  assoc ia ted  wi th  the voids  

of a p e r c o l a t i o n  cluster.  Such p e r c o l a t i o n  clusters  have been  f r equen t ly  
used as mode l s  for d i so rde red  mater ia l s .  (5) Th i s  differs f rom the  case of a 
(d i rec ted)  p a t h  in  a r a n d o m  po ten t i a l  on ly  in  tha t  the weight  for each b o n d  
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has a finite probability of being zero as well as positive. The allowed con- 
figurations of such paths have been used to model cracks formed in ductile 
fracture of a porous plate, t6) The mapping to interface growth (1'4'7/ also 
relates this to the evolution of a poisoned Eden model ~8'9) in which the 
addition of "poison" particles permanently stops the growth around a par- 
ticular site. Many related growth models have been studied, a number of 
which are also related to directed percolation/1~ 

The simplest version of such a problem consists of a hypercubic lattice, 
in which each bond is present (with weight 1) with probability p and 
absent with probability 1 - p .  We consider walks oriented along the 
diagonal of such a lattice, fixed at one end with the other end free (see 
Fig. 1). These paths are constrained to walk only on the sites which are 
present in the particular realization of the diluted lattice. Averages are 
calculated by summing over all such walks, with a weight that may include 
a random potential on each of the bonds, or may simply be an unweighted 
sum over all possible paths. For each point (x, t) on the lattice (see Fig. 1 ), 
we can define an overall weight W(x, t) of all possible paths connecting it 
to the origin. These weights can then be used to compute typical transverse 
fluctuations 6x( t )  and free energies f (x ,  t ) --In W(x, t). The (universal) 
nature of the fluctuations of these quantities is captured by the two 
exponents (~ and ~ characterizing their scaling with the path length t as 

6 f ~ t  ~~ 

6x  ~ t; (1.1) 

///"" ../. 

Fig. 1. Directed paths (solid lines) on a diluted 2D lattice (dashed bonds). 
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For a percolation problem, because the free energy and average 
displacement are undefined for some (disconnected) realizations of the 
randomness, it is necessary to define the above quantities restricted to the 
connected clusters. Above the percolation threshold the disconnected 
clusters have infinitesimal weight for large lattices, so one expects to 
recover the random potential results. Below the (directed) percolation 
threshold, the connected configurations have vanishing weight, so the 
quantities are not very well defined. It is interesting to consider what 
happens precisely at the percolation threshold. In particular, we consider 
the values of the exponents co and ~ both above and at the transition. Note 
that since the walks are assumed to be directed, the transition of interest 
is that of directed percolation, which occurs for a value o fp  above the usual 
percolation threshold. 

We find that, indeed, above the percolation threshold, the fluctuation 
exponents take on their usual random-bond values (co = 1/3 and ~ = 2/3 in 
1 + 1 dimensions). At the percolation threshold, we find that the free 
energy fluctuations follow the one-dimensional scaling co = 1/2, while the 
transverse fluctuations are limited by the anisotropic fractal shape of the 
percolation cluster ~5) ~ = v• H. In the usual random-bond case, there is a 
"free" phase (1'14) for sufficiently weak randomness and high dimensions, 
where randomness is irrelevant (co = 0  and ~ = 1/2). Since we expect the 
result ~o = 1/2 to hold at the percolation threshold in all dimensions, we 
find that such a "free" phase is never present at the transition. These 
conclusions are based on results on hierarchical lattices (Section 2) and 
numerical simulations on two-dimensional square lattices (Section 3). 

2. H I E R A R C H I C A L  L A T T I C E S  

As a first step, we consider the problem on the hierarchical lattices 
indicated in Fig. 2. The lattice is constructed iterativety, by replacing each 
bond in the lattice at the nth stage, Ln, by 2b bonds to create the lattice 
at the next iteration, Ln +1. Such lattices were introduced in the context of 
the random potential problem by Derrida and Griffiths, (15~ and offer the 
advantage that the position-space renormalization-group (RG) equations 
can be written down exactly. Such hierarchical lattices are frequently used 
as an approximation to regular latticesJ 16) The ratio of the number of 
bonds between Ln+l and Ln is then used to define an effective dimension 
via b = 2 d- 1 

In their initial work, Derrida and Griffiths (15~ examined the directed 
paths subject to random bonds at zero temperature. Consider the evolution 
under RG of the probability distribution .~n(E) for the minimum energy of 
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Fig. 2. Construction of the hierarchical lattice: At each successive level, each bond is 
replaced by 2b bonds as indicated. 

all paths connecting the endpoints of the lattice. The energy of each branch 
of Ln +1 is the sum of its two bonds, and obeys a probability distribution 

f 
o~  

(~,(E) = dE' ~n(E') ~ ( E ' -  E) (2.1) 
- - o O  

Selecting the minimum energy of the b branches then gives the RG 
equation 

d o~ ~b.(E')] (2.2) 

Numerical evolution of the above equation for b = d = 2 confirms that the 
width of ~n(E) grows as t ~ (t = 2 n) with co ~ 0.30, close to the value of 1/3 
expected on a Euclidean two dimensional lattice. Halpin-Healy ~17) has 
shown that the value of co gradually decreases to zero as d is increased. 
Note that for b =  1 the problem reduces to simple addition of random 
variables. The central limit theorem than ensures that, as long as each 
random variable has a finite variance, ~ ( E )  is Gaussian with a width 
growing as t ~ with o) = 1/2. Although the value of ~ is not defined on such 
lattices, the exponent identity (18~ c o = 2 ~ - 1  can be used to obtain an 
estimate of this exponent. 

Derrida and Griffiths (is) also constructed a d = l + e  expansion 
for ~ (E) ,  and obtained a value co = 1 / 2 -  eK2, where K2 is expressible in 
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terms of integrals of the error function, and has the numerical value 
/(2=0.29782 .... Recently Roux e t a [ .  (j9) considered the analytical form of 
the distribution for d =  2. They assumed that asymptotically the logarithm 
of ~ * ( E )  is given by - E  l for E--+ +oo.  Requiring these forms to be 
preserved under the RG equations (2.2) leads to the exponent identity 

~+ = d  r (2.3) 

and a relationship to the fluctuation exponent given by 

! 
co = 1 - -  (2.4) 

7 

They further assumed that the form of ~ * ( E )  is preserved under a Laplace 
transformation, which leads to the additional identity 

,/ 
~+ - - -  ( 2 . 5 )  

7 _ - 1  

Together these assumptions lead to co = 1/3 for d =  2, which is the correct 
value on a Euclidean lattice. They attribute the lower numerical estimate (15) 
as due to slow approach to the asymptotic limit. This result is very attrac- 
tive, since its generalization to d dimensions leads to the exponent 
co = 1 / ( d  + 1), conjectured to be exact for regular lattices.~2~ Unfortunately, 
there is no justification for the assumption leading to Eq. (2.5), and, in fact, 
its conclusion disagrees with the aforementioned 1 + e  expansion (15) at 
order z. 

For  a diluted lattice, where the weights are 0 or 1, the above zero- 
temperature considerations are not immediately relevant, as all connected 
paths (in the absence of random bonds) have the same energy. The dif- 
ference in the number of paths gives an entropic contribution that is impor- 
tant at finite temperature, where the appropriate quantity is the free energy. 
The recursion relation for the partition function at finite temperature, as 
originally obtained by Cook and Derrida, (:1~ is 

Z '  ~- Z 1 Z  2 -]- . . .  ~- Z 2 b _  1 e2b  (2.6) 

Clearly, after one step of the RG the weights Z are no longer restricted to 
0 and 1, and hence the binary (0 or 1) distribution of randomness flows 
under the RG to the same problem with a distribution of positive weights 
(i.e., a random potential) in addition to the missing sites. That is, the 0-1 
randomness problem is in the same universality class as that of a random 
potential on a percolating lattice. We expect this to be true for regular 
lattices as well. 
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The nonpercolating component can in fact be explicitly separated with 
a decomposition 

p(Z)  = po6(Z) + (1 - Po) p(Z) (2.7) 

From Eq. (2.6) one then readily derives a recursion relation for the 
probability of a bond being absent. It is interesting that this component 
decouples from the rest of the distribution and evolves as 

p•= [1 - (1 - po)2] b (2.8) 

Equation (2.8) is precisely the position-space RG approximation for per- 
colation on a hypercubic lattice (see ref. 22 for a review). The fixed point 
of this recursion relation determines Pc, the percolation threshold of the 
lattice. For p > Pc, P flows to 1, but in the process a random potential is 
generated, i.e., a nonuniform p(Z). This confirms the expectation that small 
dilution of a uniform lattice has the same effect as random bonds. 

It is the asymptotic behavior of /~(Z) that characterizes the non- 
trivial fluctuations of the free energy. As a first step we analyze the width 
of this distribution as characterized by the ratio of moments 
W2~ ( ( Z  2 ) --  ( Z ) 2 ) / ( Z )  2. The exact recursion relation for w obtained by 
considering moments of Eq. (2.6) is 

1 
2 = - -  2w2+ (1 ( b - l )  (2.9) (Dn+l bp c {W4n "~- - P c ) [  1 -- Pc']} 

The recursion relation for the pure problem can be regained by setting 
Pc= 1. In this case, it can be seen that for b > 2  there is a fixed point 
separating what appear to be phases of weak and strong randomness 
(w--* 0, or w ~ o% respectively). This information is enough to determine 
the existence of a transition, but not its critical temperature or non- 
analyticities. (21 

At p =  Pc, simple analysis shows that Eq. (2.9) has no positive fixed 
point, and the width of the distribution flows to infinity for arbitrarily 
weak disorder in all dimensions at the percolation threshold. Thus there is 
no critical dimension for appearance of a weakly disordered phase on the 
percolating hierarchical lattice. We expect this result to also hold for 
Euclidean lattices. T o  proceed further and determine the nature of the 
strongly disordered phase we need to iterate Eq. (2.6) at the value of Pc 
obtained from the fixed point of Eq. (2.8). Since the distribution p(Z) 
becomes very broad quite rapidly, it is more appropriate to consider 
/~[ln(Z)]. It is a simple matter to convert the recursion relation for p(Z) 
to one for/~(log Z). We studied the resulting integral equation numerically 



Directed Paths on Percolation Clusters 7 

i0000 

i000 

(~f)~ 

100 

Y 
/ 

f 
I . . . . . . .  I I I . . . . . .  I i i r i i i i i ~ i i i i f i i 

i0 i00 I000 lO00O 

Fig. 3. Variance of In Z versus t on the b = 2 hierarchical lattice. 

in b = d =  2 by direct iteration. We found that the distribution becomes 
more and more narrow, with a width characterized by the exponent 
~o ~ 0.49 _+ 0.02. (Fig. 3 is a plot of var In Z versus t on a log-tog scale.) 

As discussed in the next section, we believe that up to possible 
logarithmic corrections, the exponent co is exactly equal to 1/2 at percola- 
tion for all values of d. We attempted to test this hypothesis by a 1 + e 
expansion similar to that carried out at finite temperature by Cook and 
Derrida. (2~ Unfortunately, we could not make much progress due to the 
nonanalyticity of such an expansion. This is already apparent  when con- 
sidering the fixed point of Eq. (2.8) which occurs at 

pc = 1 - �89 1/, ( 2 . 1 0 )  

3. N U M E R I C A L  S I M U L A T I O N S  IN d = 2  

We also performed simulations directly on the diluted square lattice 
depicted in Fig. 1 both for the simple percolation (i.e., 0-1 randomness) 
problem and with a random potential on top of the missing bonds. Unlike 
the hierarchical lattice problem, there is no obvious way to separate out 
the Z = 0 portion of the probability distribution, since the different bonds 
do not remain statistically independent up renormalization. In order to 
calculate averages, however, one must choose some method of restriction 
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to the connected clusters. We chose what we believe to be the simplest 
possible cri terion--that  at least one connected path remains for the given 
time t. Computationally, we generated a configuration (which can be done 
concurrently with the evolution in t) and checked at each stage that the 
cluster retained this minimum connectivity. If it did not, we ignored this 
configuration and restarted the simulation. This becomes quite computa- 
tionally intensive near the percolation threshold, as a large fraction of 
clusters must be thrown out before a connected cluster is found. The 
method of transfer matrices (18'1'4) can be used to evolve a weight W(x, t) 
associated with each point on the lattice. In the case of 0-1 randomness, W 
simply measures the number of directed paths connecting the point (x, t) 
to the origin, while with random bonds present each path is weighted by 
the Boltzmann weight associated with the total energy of bonds crossed. 
The latter problem is mostly simulated at zero temperature, in which case 
it reduces to the problem of finding the path of lowest energy. We found 
identical results in both cases, although the random bond problem is found 
to converge faster. 

We first confirmed that above the percolation threshold (Pc = 0.6445 
for directed bond percolation on a square lattice(2~)), the usual 
exponents (18'4) co= 1/3 and ~=2/3  are recovered. This is illustrated in 
Figs. 4 and 5, which plot the transverse and free energy fluctuations for 
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Fig. 4. Variance of In Z versus t on the square lattice. The lower curve corresponds to 
empty/occupied bonds, while random energies are also added to occupied bonds for the 
results on the top curve. 
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Fig. 5. Transverse fluctuations on the square lattice, for the two situations described in 
Fig. 4. 

both types of distributions. The corresponding results at Pc are plotted 
in Figs. 6 and 7. Again the results confirm that the random-bond and 
simple percolation models satisfy similar asymptotic scaling. We find 
co = 0.50 + 0.01, as in the hierarchical lattices of the previous section. The 
transverse fluctuations cannot exceed the confines of the directed percola- 
tion clusters. These clusters are anisotropic, with correlation lengths that 
diverge as ~ll ~ [Pc-P[-~l and 4• ~ IPc-Pl-v~ on approaching percola- 
tion. Indeed, the observed value of ~ =0.61 +0.04 is consistent with, if 
slightly lower than, the value (23) v• ,,~ 0.63. 

The above results strongly suggest that co is exactly equal to one-half, 
which is the correct result in one dimension. A physical picture that sup- 
ports this hypothesis is the following: The walker starts at the origin, and, 
not knowing that it is trapped on the percolation cluster, begins to wander 
with the two-dimensional exponent value of co = 2/3. However, since the 
confining directed percolation cluster itself only grows as x ~/0 .63 ,  it must 
eventually intersect the edges of the cluster. Thus, the walker explores as 
much of the space that as it is allowed, and ~= v• Because of this 
limited space for exploration (a cone of vanishing angle), the walk is essen- 
tially one-dimensional, and one expects the free energy fluctuation to 
exhibit the typical value co = 1/2. 

Clearly the above argument is easily generalized to higher dimensions, 
and in general one expects a wandering exponent ~=min[v• ~l~B] at 
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Fig. 6. As in Fig. 4, but at p~. 

lO0000 

!0000 

(6X) 2 la0o 

I00 

l h m d o m  Bond + 1-0 
1-0 -+--. 

!0 

i0 

, . . . . . .  ,i , , , , , , ,,l , . ...... 

IOO lOOO I0000 

t 

Fig. 7. As in Fig. 5, but at p~. 
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the pe rco la t ion  threshold.  Likewise,  the free energy f luctuat ion exponen t  is 

expected to be co = 1/2 or  C0RB for the confined or  free cases, respectively.  

Since the wander ing  exponen t  (RB is bel ieved to decrease in h igher  d imen-  
sions, one might  imagine  that  above  some dimension,  (RB will become 
smal ler  than  the cluster  width  exponen t  v i / v l l ,  and the walk will no longer  
be confined by the pe rco la t ion  cluster. However ,  above  the cri t ical  d imen-  
sion dc = 5, mean-f ie ld  theory  holds  for d i rec ted  percola t ion ,  (23) and  vz/v l l  

is k n o w n  to be exact ly  1/2. Since 1/2 is a lower b o u n d  for (RB which is 
p r o b a b l y  not  reached at  any  finite cri t ical  d imension,  the pe rco la t ion  
cluster  is expected always to be a " re levant"  per tu rba t ion .  
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